

Model ACB

Revere

Single-Ended Beam Load Cell

FEATURES

- Capacities: 500 kg, 1 t, 2 t, and 5 t
- Low profile, stainless steel construction
- Hermetically sealed, IP66 and IP68
- Certified to OIML R60, 6000d
- 1000 Ω bridge impedance
- Current calibration output (SC) ensures easy and accurate connection of multiple load cells
- · Integral mounting step
- Optional
 - ATEX versions are available for use in potentially explosive atmospheres, caused by gas or dust

APPLICATIONS

- Platform scales
- · Belt scales
- Overhead track scales
- Silo hopper weighing

DESCRIPTION

The ACB is a high performance stainless steel beam type load cell. An integral mounting step removes the need for spacer plates and ensures optimum "bolt down" conditions.

This product is suitable for small and medium platform scales, hybrid scales, pallet weighers, and process weighing.

The fully welded construction and the cable entry ensure that this product can be used successfully in harsh environments found in the food, chemical, and allied process industries.

OUTLINE DIMENSIONS in millimeters									
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $									
	CAPACITY	500 kg	1000 kg	2000 kg	5000 kg				
-M = 03.2	Α	130.0	130.0	130.0	172.0				
	В	15.5	15.5	15.5	19.1				
	С	25.4	25.4	25.4	38.1				
┼·-(-┼-)·(-┼-)-·	D	76.2	76.2	76.2	95.3				
	E	31.8	31.8	31.8	38.0				
	ØF	13.0	13.0	13.0	20.5				
-B→ C>	ØG	20.5	20.5	20.5	30.2				
Cable specifications: Cable length: 3 m for 500 kg, 1 t 6 m for 2 + 5 + Sense + Yellow	н	14.2	14.2	14.2	20.0				
	J	26.0	27.95	31.95	40.0				
Sense – Blue	К	31.8	31.8	35.8	44.0				
Output + White Output - Red	L	57.1	57.1	57.1	76.2				
		i		1					

Model ACB

Revere

VPG Transducer						
Celtron • Revere • Sensortronics • Tedea-Huntleigh						

Single-Ended Beam Load Cell

SPECIFICATIONS					
PARAMETER		VALUE	UNIT		
Standard capacities (E _{max})	500, 1000, 2000, 5000			kg	
Accuracy class according to OIML R-60	Non-Approved	C3	C6 ⁽¹⁾		
Maximum no. of verfication intervals (n)		3000	6000		
Minimum verification interval, $(V_{min} E_{max}/Y)$		E _{max} /6000	E _{max} /12,000		
Minimum verification interval, Type MR		E _{max} /15,000	E _{max} /20,000		
Rated output (=S)	2			mV/V	
Tolerance on rated output	0.02			±mV/V	
Zero balance	1.0			±% FSO	
Combined error	0.0500	0.0230	0.0120	±% FSO	
Non-repeatability	0.070	0.035	0.018	±% FSO	
Minimum dead load output return	0.0500	0.017	0.008	±% of applied load	
Creep error (30 minutes)	0.0600	0.0245	0.012	±% of applied load	
Temperature effect on minimum dead load	0.0250	0.0117	0.0058	±% FSO/5°C	
Temperature effect on sensitivity	0.0250	0.0088	0.0045	↓ w applied load/5°C	
Maximum safe over load	150			% E _{max}	
Ultimate over load	300			% E _{max}	
Maximum safe side load	100			% E _{max}	
Deflection at E _{max}	0.20, 0.20, 0.22, 0.31			mm	
Excitation voltage	5 to 12			V	
Maximum excitation voltage	15			V	
Input resistance	1000±50			Ω	
Output resistance	1000±10			Ω	
Insulation resistance	>5000			ΜΩ	
Compensated temperature range	-10 to +40			°C	
Operating temperature range	-40 to +80			°C	
Storage temperature range	-40 to +90			°C	
Element material (DIN)	Stainless steel 1.4542				
Sealing (DIN 40.050 / EN60.529)	IP66 and IP68				
SC-Version (current calibration)	Standard				
Recommended torque on fixation bolts	\mathbf{U}^{*}	150		N*m	

⁽¹⁾ 500 kg is approved to C3 only

FSO-Full Scale Output

SC-version: The rated output and the output resistance are balanced in such a way, that the output current is calibrated to within 0.05% of a reference value. This allows easy parallel connection of the load cells.

All specifications subject to change without notice.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.