0755-82908211 info@sensorstech.com 耐特恩网站
Case 公司新闻
来源:
年初伊始,就传来各类有关传感器获得新突破的讯息,其中有新型生物传感器实现即时检测,智能手机搭载小型化分子光谱传感器以及芬兰成功研发世界首款高光谱移动传感器等。必优传感网特此对这些传感器发展突破进行收集整理,让大家能对最新的技术有更全面的了解。 突破一:芬兰成功研发世界首款高光谱移动传感器 芬兰VTT国家技术研究中心通过将iPhone摄像机转换为新型光学传感器,成功开发出世界上第一个高光谱移动设备,这将为低成本高光谱成像的消费应用带来新的前景,例如消费者将能够使用移动电话进行食品质量检测或健康监测。 光谱成像广泛用于各种物体感测和材料属性分析。高光谱成像对图像中每个像素点进行光谱分析,可实现宽范围测量。高光谱相机已经用于苛刻环境条件下的医疗、工业、空间和环境感测,但价格昂贵。VTT开发的高光谱移动设备,通过将可调节的微小MEMS(微光机电系统)滤波器与iPhone的摄像机镜头集成,并令其调节功能与摄像机的图像捕获系统同步,将智能传感器与互联网结合,使得利用具有成本效益的光学MEMS光谱技术开发新的移动应用成为可能,如利用车辆和无人机进行环境观测、健康监测和食品分析等消费应用。 突破二:世界首个搭载小型化分子光谱传感器智能手机发布 近日,长虹公司发布全球首款分子识别手机—长虹H2,这是世界上第一个搭载小型化分子光谱传感器的智能手机,可实现果蔬糖分、水分,药品真伪,皮肤年龄,酒类品质等检测,成为随身携带的个性化健康管理集成终端。 据了解,长虹将实验室级别光谱仪的能力和精度整合进可供人们日常携带和使用的手机中,有效提高用户的日常生活质量。例如在检测食品是否安全方面也有很大帮助,H2手机向所搭载的小型化高分辨率近红外光谱传感器发出指令对被测物体进行“近红外吸收光谱”的数据采集,并将光谱数据传输至云平台进行分析、计算、处理,得...
发布时间: 2017 - 11 - 09
来源:
根据YoleDevelopment预测,2015到2021年间全球MEMS(微机电系统)市场的年复合增长率约为8.9%,尽管届时市场规模可达200亿美元,但与先前由于智慧型手机、平板电脑等消费电子产品拉动的两位数以上的增长相比,市场成长明显放缓。究其原因,除了智慧型手机等消费市场成长趋缓外,MEMS持续的「跌价」也是主因之一—以陀螺仪和加速度计产品为例,其价格每季度会下跌3%至5%,因此在消费电子市场红利出尽之前,找到新的市场成长空间,MEMS厂商就是其中的关键。图一: 2015-2021年全球MEMS市场预测(按照产品分类)汽车市场就是其中被寄予厚望的一个领域,目前平均每辆汽车上使用的MEMS数量已超过20个,主要应用于汽车的安全与节能系统中,如电子稳定控制、胎压监测、安全气囊、引擎管理和尾气处理等,有数据显示2022年这一类市场规模将达到32亿美元。此外,近年来ADAS和无人驾驶汽车的发展,也会为汽车引入新的MEMS器件,比如MEMS与激光扫描系统LiDAR结合可获取更高分辨率的环境扫描数据。 汽车用抬头显示器(HUD)是另一个市场卖点—将图像化的提示讯息投射到车前挡风玻璃上,与实际道路情况重合,达到一种AR(扩增实境)的效果,这让投影设备厂商发现了一个新大陆,例如TI早已开始大力推广其基于MEMS的DLP投影技术在这种「无萤幕」场景下的应用。图二: 基于MEMS技术实现的汽车抬头显示器(HUD)MEMS在显示领域的应用,同样也可以移植到新一代消费电子产品中,为AR/VR等可穿戴装置提供小尺寸、色彩鲜艳、高流明的显示体验。与此同时,也有厂商在探索利用MEMS元件实现手势识别等3D位置和运动测量,其原理是利用MEMS的压电效应制造出压电超声波感测器,进行超声探测和定位。据了解这种感测器的功耗极低,一次测量只消耗4微焦耳的能量,低采样率时电流仅有毫安培。2016年...
发布时间: 2017 - 11 - 03
来源:
压力传感器是石化行业自动控制中使用最多的测量装置之一。在大型的化工项目中,几乎包含了所有压力传感器的应用:差压、绝压、表压、高压、微差压、高温、低温,以及各种材质及特殊加工的远传法兰式压力传感器。 在现代化连续生产的过程中,稳定可靠的压力传感器是生产工艺过程的有力保障。一旦出现计量错误,甚至发生停机故障,随之而来的经济损失将是无法计数的。压力传感器的稳定性和可靠性成为石化行业对压力传感器的首要需求。 石化行业对压力传感器的需求主要集中在可靠性、稳定性和高精度3个方面。通常,压力传感器的测量会随着工作环境和静压的变化而发生漂移。在一些微小的压力或者差压测量场合,这个漂移很可能是比较严重的。在不同的工作条件下,得到相对最正确的测量,从而维护生产的稳定和保证工艺的一致,是压力传感器稳定性的体现,也是石化行业对压力传感器稳定性的要求。 在稳定性和可靠性基础上,高精度是石化行业对压力传感器的更高需求。控制的准确度取决于控制过程中测量的精度。测量精度越高,控制准确度也就越高。其中,可靠性和许多附加需求,如,量程比、总线类型等,依赖传感器的结构设计、机械加工工艺水平和结构材料。与压力传感器的测量精度相对应的是压力传感器的测量精度和响应速度,与压力传感器的稳定性相对应的是压力传感器的温度特性和静压特性以及长期稳定性。石化行业对压力传感器的需求就体现在测量精度、快速响应、温度特性和静压特性、长期稳定性4个方面。 微压力传感器是采用半导体材料和MEMS工艺制造的新型压力传感器,具有精度高、灵敏度高、动态特性好、体积小、耐腐蚀、成本低等优点。纯单晶硅的材料疲劳小,采用这种材料制造的微压力传感器的长期稳定性好。同时,微压力传感器易于与微温度传感器集成,增加温度补偿精度,大幅提高传感器的温度特性和测量精度。 如果将2个微压力传感器集成,又可以实现静压...
发布时间: 2017 - 11 - 03
来源:
近两年,伴随传感器技术的发展,消费电子产品领域逐渐成为行业热门。除了火热的可穿戴设备外,无人机在最近两年的发展势头也不可小觑。而在无人飞行器的飞机姿态控制这一重要应用上,以MEMS加速度传感器、MEMS陀螺仪为主的传感类硬件的应用可谓是大放异彩。 加速传感器是测量空间中各方向加速度的。它利用一个“重力块”的惯性,传感器在运动的时候,“重力块”会对X、Y、Z方向(前后左右上下)产生压力,再利用一种压电晶体,把这种压力转换成电信号,随着运动的变化,各方向压力不同,电信号也在变化,从而判断通过重力加速度在不同轴向上的分量来判断倾角。同时,它没有积分误差,所以加速度传感器在相对静止的条件下,可以有效校正陀螺仪的误差。但在运动状态下,加速度传感器输出的可信度就要下降,因为它测量的是重力和外力的合力。 例如,安装在60度横滚角飞机上的三轴加速度计会测得2G的垂直加速度值,而事实上飞机相对地区表面是60度的倾角。因此,单独使用加速度计无法使飞机保 持一个固定的航向。 陀螺仪测量机体围绕某个轴向的旋转角速率值。使用陀螺仪测量飞机机体轴向的旋转角速率时,如果飞机在旋转,测得的值为非零值,飞机不旋转时,测量的值为零。因此,在60度横滚角的飞机上的陀螺仪测得的横滚角速率值为零,同样在飞机做水平直线飞行时,角速率值为零。可以通过角速率值的时间积分来估计当前的横滚角度,前提是没有误差的累积。陀螺仪测量的值会随时间漂移,经过几分钟甚至几秒钟定会累积出额外的误差来,而最终会导致对飞机当前相对水平 面横滚角度完全错误的认知。因此,单独使用陀螺仪也无法保持飞机的特定航向。 目前,无人机在应用中的较常见算法,就是利用互补滤波,即结合加速度传感器和陀螺仪的输出,来算出角度变化。
发布时间: 2017 - 11 - 03
来源:
电力系统是国家建设的基础,是国民经济的命脉所在,电力作为国家重要的能源供给设施,安全防范自是重中之重。在我国电力行业在安防系统中一直走在前列,需求与功能也随着信息技术的发展而不断完善与提高,传统的人力管理已经无法符合电力应用的智能化、数字化的趋势。 高压电塔危险性极强,塔架附近一定区域都需作无人区隔离,保证一定的安全距离。光纤振动传感技术通过埋设在无人区高压塔架周围的光缆,或者绑扎在高压塔架底部支架上的光缆,在有人员进入禁行区,或开始攀爬塔架的时候,第一时间进行报警。安保人员通过监控室显示的塔架位置及时进行定位,并出动人员及早进行干预。能有效将危险及早进行扼制。无人值守电站的安全,电力设施、设备的破坏情况屡有发生。 变电站园区周界入侵探测报警系统,成为保证变电站安全运行的最外层、最必要屏障。光纤振动传感技术采用光纤作为前端介质,同时通过光纤将前端信号传输至监控中心主机主,主机响应后通过电力专网向远程调度中心或市局、上级机构传输信号,实现远程实时监控。 随着现代光电传感技术的发展,使用轻巧方便的分布式光纤压力传感器来代替原来的普通探测器阵列已成为可能,并因其优越的性能而具有巨大的发展潜力。光纤监测技术是国际上七十年代后期才迅速发展起来的一种现代化监测技术,在航空、航天领域中已显示了其有效性。在土木、交通、地质工程领域的应用才刚刚开始,并受到了各发达国家研究机构的普遍重视,发展前景十分良好。尤其是近年来开发的分布式光纤传感技术,使光纤传感的应用领域得到进一步拓展。
发布时间: 2017 - 10 - 25
0755-82908211 info@sensorstech.com 耐特恩公众号
友情链接:    必优  |  必优网  |  华创测试  |  多分量传感器  |  力传感器  |  压力传感器  |  扭矩传感器
Copyright © 2022 深圳耐特恩科技有限公司



 

 

犀牛云提供云计算服务
ignore
5
电话
    ignore
6
二维码
    ignore
分享